DOLOMITE POWDER PLANT

The project report includes Present Market Position and Expected Future Demand, Market Size, Statistics, Trends, SWOT Analysis and Forecasts. Report provides a comprehensive analysis from industry covering detailed reporting and evaluates the position of the industry by providing insights to the SWOT analysis of the industry.

We can prepare PROJECT REPORT as per your INVESTMENT PLAN for BANK LOAN REQUIREMENT and INDUSTRY ANALYSIS. All reports are prepared by highly qualified consultants and verified by a panel of experts.

Have Query? Click Here to Chat
Industry Expert is Online, Chat with him for more detail.

“Dolomite” is a word that is used by geologists in two different ways: 1) as the name of the mineral dolomite; and, 2) as the name of a rock known as dolomite, dolostone, or dolomite rock.

Dolomite crystals: Dolomite crystals from Penfield, New York. This specimen is approximately 3 inches (6.7 centimeters) across.

Dolomite is a common rock-forming mineral. It is a calcium magnesium carbonate with a chemical composition of CaMg(CO3)2. It is the primary component of the sedimentary rock known as dolostone and the metamorphic rock known as dolomitic marble. Limestone that contains some dolomite is known as dolomitic limestone.

Granular Dolomite: Dolomitic marble from Thornwood, New York. This specimen is approximately 3 inches (6.7 centimeters) across.

Dolomite is rarely found in modern sedimentary environments, but dolostones are very common in the rock record. They can be geographically extensive and hundreds to thousands of feet thick. Most rocks that are rich in dolomite were originally deposited as calcium carbonate muds that were postdepositionally altered by magnesium-rich pore water to form dolomite.

Dolomite is also a common mineral in hydrothermal veins. There it is often associated with barite, fluorite, pyrite, chalcopyrite, galena, or sphalerite. In these veins it often occurs as rhombohedral crystals which sometimes have curved faces.

Along with calcite and aragonite, dolomite makes up approximately 2 percent of the Earth’s crust. The bulk of the dolomite constitutes dolostone formations that occur as thick units of great areal extent in many sequences of chiefly marine strata. (The rock dolostone is referred to by only the mineral name—i.e., dolomite—by many geologists.) The Dolomite Alps of northern Italy are a well-known example. Other relatively common occurrences of the mineral dolomite are in dolomite marble and dolomite-rich veins. It also occurs in the rare igneous rock known as dolomite carbonatite.

From the standpoint of its origin, the dolomite of dolostones is one of the most interesting of all the major rock-forming minerals. As discussed below, a large percentage of the dolomite in thick marine dolostone units is thought by many geologists and geochemists to have been formed by replacement of CaCO3 sediment rather than by direct precipitation.

Ferrous iron commonly substitutes for some of the magnesium in dolomite, and a complete series very likely extends between dolomite and ankerite [∼CaFe(CO3)2]. Manganese also substitutes for magnesium, but typically only to the extent of a few percent and in most cases only along with iron. Other cations known to substitute—albeit in only relatively minor amounts—within the dolomite structure are barium and lead for calcium and zinc and cobalt for magnesium.

Nearly all the natural elements have been recorded as present in at least trace quantities in dolostones. It is, however, unclear which ones actually occur in the dolomite; some of them may occur within other mineral constituents of the analyzed rocks. Indeed, only a few of these elements—e.g., strontium, rubidium, boron, and uranium (U)—are known definitely to occur within the dolomite structure.

Dolomite effervesces with dilute hydrochloric acid, but slowly rather than vigorously as calcite does; in general, it appears to smolder slowly, and in some cases it does so only after the rock has been powdered or the acid warmed, or both. This difference in the character of the effervescence serves as the test usually used to distinguish dolomite from calcite in the field. In the laboratory, staining techniques, also based on chemical properties or typical compositions, may be used to distinguish between these minerals. The stains generally employed are especially valuable for investigating rocks made up of alternate lamellae of dolostone and limestone composition.

In a somewhat simplified way, the dolomite structure can be described as resembling the calcite structure but with magnesium ions substituted for calcium ions in every other cation layer. Thus, the dolomite structure can be viewed as ideally comprising a calcium layer, a CO3 layer, a magnesium layer, another CO3 layer, and so forth. However, as described for the potassium feldspars, dolomites—unlike calcites—may also exhibit order-disorder relationships. This results because the purity of some of the cation layers may be less than ideal—i.e., some of the “calcium layers” may contain magnesium, and some of the “magnesium layers” may contain some calcium.

Dolomite crystals are colourless, white, buff-coloured, pinkish, or bluish. Granular dolomite in rocks tends to be light to dark gray, tan, or white. Dolomite crystals range from transparent to translucent, but dolomite grains in rocks are typically translucent or nearly opaque. The lustre ranges from subvitreous to dull. Dolomite, like calcite, cleaves into six-sided polyhedrons with diamond-shaped faces. Relations between lamellar twinning and cleavage planes of dolomite, however, differ from those of calcite (see figure), and this difference may be used to distinguish the two minerals in coarse-grained rocks such as marbles. Dolomite has a Mohs hardness of 31/2 to 4 and a specific gravity of 2.85 ± 0.01. Some dolomites are triboluminescent.

Relations between lamellar twinning and cleavage planes in dolomite and calcite. This difference can be discerned best when thin sections of the minerals are viewed under a microscope.

The dolomite of most dolostones is granular, with the individual grains ranging in size from microscopic up to a few millimetres across.

Category: Tag:

Description

INTRODUCTION
PROPERTIES OF DOLOMITE
PHYSICAL PROPERTIES OF DOLOMITE
SOLID SOLUTION AND SUBSTITUTION
USES AND APPLICATION OF DOLOMITE
CHEMICAL PROPERTIES OF DOLOMITE AND USES
DOLOMITE CHEMICAL PROPOERTIES
FOLLOWING ARE THE PROPERTIES OF DOLOMITE:
SPECIFICATION OF DOLOMITE
SPECIFICATION OF DOLOMITE POWDER
DOLOMITE POWDER
SPECIFICATIONS
ADDITIONAL INFORMATION
POWDER AND GRAINS OF THIS MATERIAL IS USED IN FOLLOWING INDUSTRIES:
MESH SIZES:
DOLOMITE IN GLASS INDUSTRY
REQUIREMENT OF HIGH-GRADE DOLOMITE FOR GLASS:
ATTRIBUTES:
SPECIFICATION OF DOLOMITE POWDER FOR GLASS INDUSTRY
SPECIFICATIONS OF DOLOMITE POWDER IN GLASS MAKING INDUSTRY
MICRONISED DOLOMITE POWDER (SPECIFICATION & APPLICATION)
SPECIFICATIONS:
OVERVIEW OF DOLOMITE IN INDIA
RESERVES/RESOURCES
EXPLORATION & DEVELOPMENT
PRODUCTION AND STOCKS
TABLE: STATE WISE PRODUCTION OF DOLOMITE
FUTURE OUTLOOK
MARKET OVERVIEW OF DOLOMITE POWDER
KEY MANUFACTURERS ARE:
MANUFACTURING PROCESS OF DOLOMITE POWDER
SCREENING STAGE
MILLING
DOLOMITE POWDER PROCESS TECHNOLOGY
PROCESS FLOW DIAGRAM
PRINCIPLES OF PLANT LAYOUT
PLANT LOCATION FACTORS
PRIMARY FACTORS
SPECIFIC FACTORS
EXPLANATION OF TERMS USED IN THE PROJECT REPORT
PROJECT IMPLEMENTATION SCHEDULES
INTRODUCTION
PROJECT HANDLING
PROJECT SCHEDULING
PROJECT CONSTRUCTION SCHEDULE
TIME SCHEDULE
PLANT LAYOUT
SUPPLIERS OF RAW MATERIALS
SUPPLIERS OF PLANT AND MACHINERY

APPENDIX – A:

01. PLANT ECONOMICS
02. LAND & BUILDING
03. PLANT AND MACHINERY
04. OTHER FIXED ASSESTS
05. FIXED CAPITAL
06. RAW MATERIAL
07. SALARY AND WAGES
08. UTILITIES AND OVERHEADS
09. TOTAL WORKING CAPITAL
10. TOTAL CAPITAL INVESTMENT
11. COST OF PRODUCTION
12. TURN OVER/ANNUM
13. BREAK EVEN POINT
14. RESOURCES FOR FINANCE
15. INSTALMENT PAYABLE IN 5 YEARS
16. DEPRECIATION CHART FOR 5 YEARS
17. PROFIT ANALYSIS FOR 5 YEARS
18. PROJECTED BALANCE SHEET FOR (5 YEARS)

Additional information

Plant Capacity

200MT/Day

Land & Building

(3 Acres)

Plant & Machinery

US$ 557142

Rate of Return

35%

Break Even Point

51%